Skip to main content

OpenAI

LiteLLM supports OpenAI Chat + Text completion and embedding calls.

API KEYS

import os 

os.environ["OPENAI_API_KEY"] = ""

Usage

import os 
from litellm import completion

os.environ["OPENAI_API_KEY"] = ""


messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion("gpt-3.5-turbo", messages)

OpenAI Chat Completion Models

Model NameFunction CallRequired OS Variables
gpt-3.5-turbocompletion('gpt-3.5-turbo', messages)os.environ['OPENAI_API_KEY']
gpt-3.5-turbo-0301completion('gpt-3.5-turbo-0301', messages)os.environ['OPENAI_API_KEY']
gpt-3.5-turbo-0613completion('gpt-3.5-turbo-0613', messages)os.environ['OPENAI_API_KEY']
gpt-3.5-turbo-16kcompletion('gpt-3.5-turbo-16k', messages)os.environ['OPENAI_API_KEY']
gpt-3.5-turbo-16k-0613completion('gpt-3.5-turbo-16k-0613', messages)os.environ['OPENAI_API_KEY']
gpt-4completion('gpt-4', messages)os.environ['OPENAI_API_KEY']
gpt-4-0314completion('gpt-4-0314', messages)os.environ['OPENAI_API_KEY']
gpt-4-0613completion('gpt-4-0613', messages)os.environ['OPENAI_API_KEY']
gpt-4-32kcompletion('gpt-4-32k', messages)os.environ['OPENAI_API_KEY']
gpt-4-32k-0314completion('gpt-4-32k-0314', messages)os.environ['OPENAI_API_KEY']
gpt-4-32k-0613completion('gpt-4-32k-0613', messages)os.environ['OPENAI_API_KEY']

These also support the OPENAI_API_BASE environment variable, which can be used to specify a custom API endpoint.

OpenAI Text Completion Models

Model NameFunction CallRequired OS Variables
text-davinci-003completion('text-davinci-003', messages)os.environ['OPENAI_API_KEY']
ada-001completion('ada-001', messages)os.environ['OPENAI_API_KEY']
curie-001completion('curie-001', messages)os.environ['OPENAI_API_KEY']
babbage-001completion('babbage-001', messages)os.environ['OPENAI_API_KEY']
babbage-002completion('ada-001', messages)os.environ['OPENAI_API_KEY']
davinci-002completion('davinci-002', messages)os.environ['OPENAI_API_KEY']

Using OpenAI Proxy with LiteLLM

import os 
import litellm
from litellm import completion

os.environ["OPENAI_API_KEY"] = ""

# set custom api base to your proxy
# either set .env or litellm.api_base
# os.environ["OPENAI_API_BASE"] = ""
litellm.api_base = "https://openai-proxy.berriai.repl.co"


messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion("gpt-3.5-turbo", messages)